HW Quiz B: Particle Motion

1. Given the graph of the velocity $(\mathrm{v}(\mathrm{t}))$ answer the questions below

a. At what times is particle moving to the left? Give a reason for your answer.
b. At what times is the particle moving to the right? Give a reason for your answer.
c. At what times is the particle stopped? Give a reason for your answer.
d. When is the acceleration positive? Give a reason for your answer?
e. When is the acceleration negative? Give a reason for your answer?
f. When is the acceleration zero? Give a reason for your answer?
g. When is the acceleration undefined? Give a reason for your answer.
h. When is the particle at its greatest speed? Give a reason for your answer.
i. When is the speed increasing? Give a reason for your answer.
j. When is the speed decreasing. Give a reason for your answer?
k. Graph the acceleration on the original graph above.
2. Use the equation $s(t)=\frac{1}{3} t^{3}-\frac{7}{2} t^{2}+10 t$ to answer the following questions
a. Find the displacement during the first 2 seconds.
b. Find the average velocity during
the first 2 seconds.
c. Find the instantaneous velocity at any time t.
d. Find the acceleration of the particle at any time t .
e. When is the particle at rest?
f. Describe the motion of the particle.
g. Determine the speed of the particle when the acceleration is zero.
3. Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time $\mathrm{t}, 0 \leq t \leq 6$, is given by a differentiable function C , where t is measured in minutes. Selected values of $\mathrm{C}(\mathrm{t})$, measured in ounces, are given in the table.

$\mathrm{t}($ minutes $)$	0	1	2	3	4	5	6
$\mathrm{C}(\mathrm{t})$ ounces	0	5.3	8.8	11.2	12.8	13.8	14.5

a) Use the data in the table to approximate $C^{\prime}(4.5)$. Show the computations that lead to your answer, indicate units of measure, and interpret the answer.
4. The number of gallons of water in a tank t minutes after the tank has started to drain is $\mathrm{G}(\mathrm{t})=400(20-\mathrm{t})^{2}$.
a. How fast is the water running out at the end of 5 minutes?
b. What is the average rate at which the water flows out during the first 10 minutes?

